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the x axis is parallel to the hexagonal X axis and the z 
axis is parallel to the hexagonal Z axis. 

3. An example: the magnetoelectric effect 

The magnetoelectric effect is represented by the rank 2 
c-axial physical-property tensor aeV 2 (Birss, 1964). In the 
tabulation given by Birss (1964_) only the case corresponding 
to the magnetic point group 3(Z) '  of the magnetic-point- 
group type 3' is given. In Table 3 we give the form of the 
magnetoelectric-effect tensor for all magnetic point groups 
which are subgroups of M ( Z ) 3 ( X Y Z ) M ( X Y ) I '  (Ohl ' )  
and 6 ( Z ) / M ( Z ) M ( X ) M ( 1 ) I '  (Dr_.hl') and which belong 
to the magnetic-point-group type 3'. The complete list of 
forms of the magnetoelectric-effect tensor invariant under 
all magnetic point groups is contained within the deposited 
tabulations.* 

* See deposition footnote. 
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Abstract 

The asymmetric part of the translation function is closely 
related to a unit cell and the symmetry of the multiple 
implication function. The actual asymmetric part depends 
on the symmetry of the fragment. 

Theory 

The translation function is used to locate a correctly orien- 
ted molecular fragment in the unit cell with respect to the 
symmetry elements. The full symmetry translation function 
can be given, for example, by (Pavel~ik, 1988) 

F F S S 
T(r) = min min min min P { [ R , ( r + r i ) + t , ]  

i= l  j= l  m=l  n=l  

- [ R m ( r + r j )  +tin]}, (1) 

where F is the number of atoms in the fragment, r~ are 
vectors to the atoms of the fragment, r is a search vector, 
R,  are rotational and t ,  translational parts of the symmetry 
operator, respectively. S is the number of space-group 
operators. A search volume is given by an asymmetric part 
of the translation function. 

In the papers of Egert & Sheldrick (1985) and Rius & 
Miravitlles (1987) it is stated that the asymmetric unit of 
the translation function is defined uniquely by the Cheshire 
groups (Hirshfeld, 1968). It is not clear whether this means 
an asymmetric unit or a unit cell of the Cheshire group. 
On the other hand, Wilson & Tollin (1986) state in the 
P A T M E T  program instructions that the unique region is 
0-½ on each relevant axis. Both statements are only partially 
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correct. The Cheshire groups have limits in the application 
to the pure translation problem because of special treatment 
of chirality. 

The asymmetric part of the translation function depends 
in general on the space group of the crystal and on the 
point group of the fragment. Owing to the symmetry of the 
Patterson function P ( r ) =  P(Rnr), (1) can be simplified to* 

F F S 
T ( r ) = m i n m i n m i n P [ ( R s - l ) r + t s + R s r i - r j ] .  (2) 

i=1 j= l  s= l  

For the extreme case of a single (heavy) atom, the transla- 
tion function is reduced to 

S 
T(r) = min P[(Rs - I ) r + L  + (R~-  I)r~]. (3) 

s=l  

Equation (3) is equivalent to the multiple implication (sym- 
metry minimum) function, MIF (Ellison & Levy, 1965; 
Simpson, Dobrott & Lipscomb, 1965), with the origin 
shifted by an arbitrary vector r~. The symmetry of the 
multiple implication function has recently been described 
by Zimmermann (1988) and Pavel~.ik (1990). The MIF 
groups are closely related to the Cheshire groups. In the 
case of a single atom, the asymmetric part of the translation 
function is given by the asymmetric part of the MIF group. 

* There is an error in equation (9) of Paveli~ik (1988). It should 
read 

n n S Z I Z !  1 I/2 
D(r) = rain min min P(r-Rsr- t j+r~,-Rjr~ ' )  

L k - i  l~k S~2 m~sZkZt 
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For the asymmetric fragment, the unit cell of the transla- 
tion function is given by 

T(r) = T( r+ to)  

F F S 

= min min min P[(R~- l ) ( r+ to )+t~+R~r i - r / ] ,  (4) 
i = l  j = ,  s = l  

where t,, is the new translation period. Equation (4) can 
only be satisfied if (t,.-centring) 

(R~ - l)to - to  -= 0 (mod 1), s - - l , 2  . . . .  ,S. (5) 

Equation (5) defines the permissible origin shifts 
(Giacovazzo, 1974). The translation function has no other 
symmetry because of general coordinates, r~, of the frag- 
ment. For the asymmetric fragment the unique region of 
the translation function is given by the whole cell of the 
MIF. These unit cells coincide with those of normalizers 
of the space groups and are tabulated in International Tables 
for Crystallography (1987). The unique region is equal to 
0-½ for almost all triclinic, monoclinic and orthorhombic 
space groups. 

If the fragment possesses a symmetry, (2) can be rewritten 

F F H H S 

T(r) =min  min min min min P[(Rs - l ) r+t~ 
i = l  j = l  k = !  / = 1  x = l  

+RsGpGkr i - GpGtrj], (6) 

where H is the order and Gk are operators of the point 
group of the fragment and F is now the number of indepen- 
dent atoms in the fragment. If the fragment contains a 
correctly oriented symmetry element so that Gp = Rp then 

F" F H H S 

T ( R p r + t p )  = min min min min min P [ ( R ~  - i ) ( R p r + t p )  
i = l  J = i  k = l  I = i  s = l  

+L +RsRpGkrt - R r G t r  i] 

F" F" H H S 

= rain min min min min P [ ( R , .  - l ) r +  t , .  
i = 1  j = l  k = l  / = 1  m = l  

+RmGkr, - G , r / ]  = T(r) (7) 

because (R~ - l ) ( R p r + t p ) + t s  = Rp[(Rm - l ) r + t , , ] ,  P(r) = 
P(Rp r), where R m = R plRs Rp, and rearrangement of space- 
group operators. This means that the translation function 
has the symmetry of the MIF Subgroup. The subgroup 
contains those symmetry operations which are related to 
the symmetry operations of the point group of the fragment. 
The unique region of the translation function is given by 
the asymmetric part of  the MIF  subgroup. 

Example. For a structure with space group P2, /c  and 
cell dimensions a, b, c. The MIF group is P2/m and the 
MIF unit cell is a/2, b/2, c/2. The search region of the 
translation function for a single atom is a/4, b/4, c/2 (or 
a/2, b/4, c/4). For the asymmetric fragment the search 
region is a/2, b/2, c/2. If the fragment has a twofold axis 
parallel to b, the MIF subgroup is P2 and the s~arch volume 
is a/4, b/2, c/2 (or a/2, b/2, c/4). If the fragment has a 
plane perpendicular to b, the MIF subgroup is Pm and the 
search volume is a/2, b/4, c/2. If the fragment has symmetry 
2/m with twofold axis parallel to b, the search volume of 
the translation function is the same as that for the single- 
atom case. 
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Abstract 

The formulae for Fourier and inverse Fourier transforms 
have been generalized to take into account crystal symmetry 
using group theory. When the Fourier components (struc- 
ture factors) are restricted to a given reciprocal plane, the 
two-dimensional inverse Fourier transform yields the pro- 
jection of the charge/spin density in the unit cell in direct 
space, parallel to the axis normal to that plane. The formulae 
above are further generalized to this two-dimensional case. 
The latter case is central to a polarized neutron diffraction 
data analysis using maximum entropy. 

0108-7673/91 / 030293-03503.00 

Introduction 

The recent introduction of new image reconstruction tech- 
niques (IRT's) such as maximum entropy (see Bricogne, 
1984; Livesey & Skilling, 1985) calls for a reassessment of 
key formulae in crystallography. Clearly, structure factors, 
crystal symmetry, projections and Fourier synthesis are not 
new topics (see Waser, 1955; Bertaut, 1955, 1956, 1959; 
Bertaut & Waser, 1957; Buerger, 1960; Cornwell, 1969; 
Lax, 1974, among others). Nevertheless, applying new 
IRT's entails developing new mathematical tools and it 
is the aim of the present communication to provide the 
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